Although synthetic aperture imaging (SAI) can achieve the seeing-through effect by blurring out off-focus foreground occlusions while recovering in-focus occluded scenes from multi-view images, its performance is often deteriorated by dense occlusions and extreme lighting conditions. To address the problem, this paper presents an Event-based SAI (E-SAI) method by relying on the asynchronous events with extremely low latency and high dynamic range acquired by an event camera. Specifically, the collected events are first refocused by a Refocus-Net module to align in-focus events while scattering out off-focus ones. Following that, a hybrid network composed of spiking neural networks (SNNs) and convolutional neural networks (CNNs) is proposed to encode the spatio-temporal information from the refocused events and reconstruct a visual image of the occluded targets. Extensive experiments demonstrate that our proposed E-SAI method can achieve remarkable performance in dealing with very dense occlusions and extreme lighting conditions and produce high-quality images from pure events. Codes and datasets are available at https://dvs-whu.cn/projects/esai/.
translated by 谷歌翻译
This paper studies the challenging two-view 3D reconstruction in a rigorous sparse-view configuration, which is suffering from insufficient correspondences in the input image pairs for camera pose estimation. We present a novel Neural One-PlanE RANSAC framework (termed NOPE-SAC in short) that exerts excellent capability to learn one-plane pose hypotheses from 3D plane correspondences. Building on the top of a siamese plane detection network, our NOPE-SAC first generates putative plane correspondences with a coarse initial pose. It then feeds the learned 3D plane parameters of correspondences into shared MLPs to estimate the one-plane camera pose hypotheses, which are subsequently reweighed in a RANSAC manner to obtain the final camera pose. Because the neural one-plane pose minimizes the number of plane correspondences for adaptive pose hypotheses generation, it enables stable pose voting and reliable pose refinement in a few plane correspondences for the sparse-view inputs. In the experiments, we demonstrate that our NOPE-SAC significantly improves the camera pose estimation for the two-view inputs with severe viewpoint changes, setting several new state-of-the-art performances on two challenging benchmarks, i.e., MatterPort3D and ScanNet, for sparse-view 3D reconstruction. The source code is released at https://github.com/IceTTTb/NopeSAC for reproducible research.
translated by 谷歌翻译
无人驾驶飞机(UAV)通过低成本,大型覆盖,实时和高分辨率数据采集能力而广泛应用于检查,搜索和救援行动的目的。在这些过程中产生了大量航空视频,在这些过程中,正常事件通常占压倒性的比例。本地化和提取异常事件非常困难,这些事件包含手动从长视频流中的潜在有价值的信息。因此,我们致力于开发用于解决此问题的异常检测方法。在本文中,我们创建了一个新的数据集,名为Droneanomaly,用于空中视频中的异常检测。该数据集提供了37个培训视频序列和22个测试视频序列,这些视频序列来自7个不同的现实场景,其中包括各种异常事件。有87,488个彩色视频框架(训练51,635,测试35,853),每秒30帧的尺寸为640美元\ times 640美元。基于此数据集,我们评估现有方法并为此任务提供基准。此外,我们提出了一种新的基线模型,即变压器(ANDT)的异常检测,该模型将连续的视频帧视为一系列小管,它利用变压器编码器从序列中学习特征表示,并利用解码器来预测下一帧。我们的网络模型在训练阶段模型正常,并确定了具有不可预测的时间动力学的事件,作为测试阶段的异常。此外,为了全面评估我们提出的方法的性能,我们不仅使用无人机 - 异常数据集,而且使用另一个数据集。我们将使我们的数据集和代码公开可用。可以在https://youtu.be/ancczyryoby上获得演示视频。我们使数据集和代码公开可用。
translated by 谷歌翻译
由于其低成本和快速移动性,无人驾驶汽车(UAV)现在已广泛应用于数据获取。随着航空视频量的增加,对这些视频自动解析的需求正在激增。为了实现这一目标,当前的研究主要集中于在空间和时间维度沿着卷积的整体特征提取整体特征。但是,这些方法受到小时接收场的限制,无法充分捕获长期的时间依赖性,这对于描述复杂动力学很重要。在本文中,我们提出了一个新颖的深神经网络,称为futh-net,不仅为整体特征建模,而且还模拟了空中视频分类的时间关系。此外,在新型融合模块中,多尺度的时间关系可以完善整体特征,以产生更具歧视性的视频表示。更特别地,FUTH-NET采用了两条道路架构:(1)学习框架外观和短期时间变化的一般特征的整体代表途径,以及(2)捕获跨任意跨越任意时间关系的时间关系途径框架,提供长期的时间依赖性。之后,提出了一个新型的融合模块,以时空整合从这两种途径中学到的两个特征。我们的模型对两个航空视频分类数据集进行了评估,即ERA和无人机操作,并实现了最新结果。这表明了其在不同识别任务(事件分类和人类行动识别)之间的有效性和良好的概括能力。为了促进进一步的研究,我们在https://gitlab.lrz.de/ai4eo/reasoning/futh-net上发布该代码。
translated by 谷歌翻译
在过去的十年中,基于深度学习的算法在遥感图像分析的不同领域中广泛流行。最近,最初在自然语言处理中引入的基于变形金刚的体系结构遍布计算机视觉领域,在该字段中,自我发挥的机制已被用作替代流行的卷积操作员来捕获长期依赖性。受到计算机视觉的最新进展的启发,遥感社区还见证了对各种任务的视觉变压器的探索。尽管许多调查都集中在计算机视觉中的变压器上,但据我们所知,我们是第一个对基于遥感中变压器的最新进展进行系统评价的人。我们的调查涵盖了60多种基于变形金刚的60多种方法,用于遥感子方面的不同遥感问题:非常高分辨率(VHR),高光谱(HSI)和合成孔径雷达(SAR)图像。我们通过讨论遥感中变压器的不同挑战和开放问题来结束调查。此外,我们打算在遥感论文中频繁更新和维护最新的变压器,及其各自的代码:https://github.com/virobo-15/transformer-in-in-remote-sensing
translated by 谷歌翻译
高分辨率卫星图像可以为土地覆盖分类提供丰富的详细空间信息,这对于研究复杂的建筑环境尤为重要。但是,由于覆盖范围复杂的覆盖模式,昂贵的训练样品收集以及卫星图像的严重分布变化,很少有研究应用高分辨率图像来大规模详细类别的覆盖地图。为了填补这一空白,我们提出了一个大规模的土地盖数据集,即五亿像素。它包含超过50亿个标记的像素,这些像素由150个高分辨率Gaofen-2(4 M)卫星图像,在24类系统中注释,涵盖人工结构,农业和自然阶层。此外,我们提出了一种基于深度学习的无监督域适应方法,该方法可以转移在标记的数据集(称为源域)上训练的分类模型,以获取大型土地覆盖映射的无标记数据(称为目标域) 。具体而言,我们采用动态伪标签分配和班级平衡策略来介绍一个端到端的暹罗网络,以执行自适应领域联合学习。为了验证我们的数据集的普遍性以及在不同的传感器和不同地理区域中提出的方法,我们对中国的五个大城市和其他五个亚洲国家的五个城市进行了土地覆盖地图,以下情况下使用:Planetscope(3 m),Gaofen-1,Gaofen-1 (8 m)和Sentinel-2(10 m)卫星图像。在总研究区域为60,000平方公里,即使输入图像完全未标记,实验也显示出令人鼓舞的结果。拟议的方法接受了5亿像素数据集的培训,可实现在整个中国和其他亚洲国家的高质量和详细的土地覆盖地图。
translated by 谷歌翻译
检测小物体是阻碍对象检测开发的主要障碍之一。通用对象检测器的性能在微小的对象检测任务上往往会大大恶化。在本文中,我们指出的是,基于锚的检测器中的先验盒或无锚检测器中的点是微小对象的优化。我们的主要观察结果是,当前基于锚的或无锚的标签分配范例将引起许多离群的微小地面真实样本,从而导致检测器对小物体的关注较少。为此,我们提出了一个基于高斯接受场的标签分配(RFLA)策略,以进行微小的对象检测。具体而言,RFLA首先利用了特征接受场遵循高斯分布的先前信息。然后,提出了一个新的接受场距离(RFD),而不是通过IOU或中心采样策略分配样品,以直接测量高斯接受场和地面真相之间的相似性。考虑到基于阈值的和中心的采样策略偏向大物体,我们进一步设计了基于RFD的层次标签分配(HLA)模块,以实现微小对象的平衡学习。四个数据集上的广泛实验证明了所提出的方法的有效性。尤其是,我们的方法在AI-TOD数据集上以4.0 AP点优于最先进的竞争对手。代码可从https://github.com/chasel-tsui/mmdet-rfla获得
translated by 谷歌翻译
本文研究了整体3D线框感知的问题(HOW-3D),这是一项新的任务,即从单视2D图像中感知可见的3D线框和无形的任务。由于无法在单个视图中直接观察到对象的非前面表面,因此在HOF-3D中估算了非视线(NLOS)几何形状,这是一个根本上具有挑战性的问题,并且在计算机视觉中仍然保持开放。我们通过提出一个ABC-HOW基准来研究HOF-3D的问题,该基准是在带有12K单视图像和相应的整体3D线框模型的CAD模型之上创建的。借助我们的大规模ABC高音基准,我们提出了一种新颖的深空间格式塔(DSG)模型,以学习可见的连接和线段作为基础,然后从可见的线索中推断出NLOS 3D结构,并遵循遵循可见的线索。人类视觉系统。在我们的实验中,我们证明了我们的DSG模型在从单视图图像中推断出整体3D线框方面表现出色。与强大的基线方法相比,我们的DSG模型在单视图像中检测不可见线的几何形状方面优于先前的线框探测器,甚至与先前的艺术相比,这些艺术是对重建3D线框的输入的效力。
translated by 谷歌翻译
本文介绍了Omnicity,这是一种从多层次和多视图图像中了解无所不能的城市理解的新数据集。更确切地说,Omnicity包含多视图的卫星图像以及街道级全景图和单视图图像,构成了超过100k像素的注释图像,这些图像是从纽约市的25k Geo-Locations中良好的一致性和收集的。为了减轻大量像素的注释努力,我们提出了一个有效的街景图像注释管道,该管道利用了卫星视图的现有标签地图以及不同观点之间的转换关系(卫星,Panorama和Mono-View)。有了新的Omnicity数据集,我们为各种任务提供基准,包括构建足迹提取,高度估计以及构建平面/实例/细粒细分。我们还分析了视图对每个任务的影响,不同模型的性能,现有方法的局限性等。与现有的多层次和多视图基准相比,我们的Omnicity包含更多具有更丰富注释类型和更丰富的图像更多的视图,提供了从最先进的模型获得的更多基线结果,并为街道级全景图像中的细粒度建筑实例细分介绍了一项新颖的任务。此外,Omnicity为现有任务提供了新的问题设置,例如跨视图匹配,合成,分割,检测等,并促进开发新方法,以了解大规模的城市理解,重建和仿真。 Omnicity数据集以及基准将在https://city-super.github.io/omnicity上找到。
translated by 谷歌翻译
本文通过解决面具可逆性问题来研究建筑物多边形映射的问题,该问题导致了基于学习的方法的预测蒙版和多边形之间的显着性能差距。我们通过利用分层监督(底部级顶点,中层线段和高级区域口罩)来解决此问题,并提出了一种新颖用于建筑物多边形映射的面具。结果,我们表明,学识渊博的可逆建筑面具占据了深度卷积神经网络的所有优点,用于建筑物的高绩效多边形映射。在实验中,我们评估了对Aicrowd和Inria的两个公共基准的方法。在Aicrowd数据集上,我们提出的方法对AP,APBOUNDARY和POLIS的指标获得了一致改进。对于Inria数据集,我们提出的方法还获得了IOU和准确性指标的竞争结果。型号和源代码可在https://github.com/sarahwxu上获得。
translated by 谷歌翻译